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survey

Since the middle of the last decade, 
Apache Spark has become the de-facto 
standard for large-scale distributed data 
processing. This open-source framework 
leveraged in-memory MapReduce and 
promised to simplify and accelerate data 
science projects, which had previously 
been mired by the difficulties of the 
Hadoop framework from which Spark 
evolved. In a 2016 Stack Overflow , 
Spark was rated as the highest paying and 
2nd most trending technology, indicating 
the promise that the development 
community saw in it.
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Apache Spark promised a 
bright future for data 
lakes. Has it lived up to 
expectations?

https://databricks.com/blog/2016/03/22/apache-spark-trending-in-the-stack-overflow-survey.html


However, Apache Spark is now over a 
decade old and no longer the new kid on 
the block, but an established part of the big 
data development toolkit - either in its 
original open-source format or in the 
various proprietary tools it has progenated 
- including Databricks, Elastic MapReduce, 
and Google Cloud’s Dataproc. 



Has Spark lived up to its promise? Is it 
delivering value to organizations in the age 
of cloud computing? Does it serve data 
engineers in building data lake 
infrastructure, as well as data scientists 
using it for ad-hoc data exploration?



In this ebook we will highlight the ways in 
which Spark and Spark-based managed 
services fit into the modern data 
engineering landscape, and see how they
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 compare to Upsolver, a cloud-native data 
processing solution built for data lakes.
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Data lakes provide unlimited and 
affordable raw data storage, but have 
proven difficult to operationalize due to 
costly and complex data processing 
required to make that data consumable. 

To understand the role data processing 
tools play in modern data lake 
implementations, we first need to 
understand what a data lake is and why 
organizations choose to implement data 
lakes in the first place.

The data lake is an approach to big data 
architecture that premised on storing all 
the dat an organization generates in its 
original form, in a single repository that 
serves multiple analytic use cases or 
services.

What is a data lake?
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The Data Lake Dilemma



Data lakes center around decoupled and 
virtually limitless object storage in which to 
preserve all raw data in a “store now, 
analyze later” paradigm.  In the cloud, the 
storage layer leverages inexpensive object 
storage such as Amazon S3, Azure Blob 
Storage, or Google Cloud Storage; and the 
data lake typically also consists of a 
variable range of tools and technologies 
that move, structure, and catalog the data 
to make it queryable – and therefore 
valuable.
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Why do organizations use data 
lakes?

Decoupling cloud 
storage from compute allows 
organizations to store more data 
without worrying about ballooning 
costs.

Storage costs: 1.



 Cloud object storage is the 
most reliable means of storage, with 
tools such as Amazon S3 promising  
99.999999999% object durability.

Reliability:2.

 Since all data is stored 
in raw form, it can easily be replayed to 
recreate a historical state and for error 
recovery.

Fault tolerance:3.

Using cloud object storage 
prevents lock-in to a specific database 
or data warehouse vendor, allowing 
companies can employ a best-of-breed 
tooling strategy.

Openness: 4.

The attractiveness of the data lake is that 
when data is generated, it is often unclear 
what parts of the data will be used for 
what purpose.  A cheap raw storage layer 
keeps your options open. 
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While the advantages of data lakes make 
them indispensable in a modern big data 
architecture, many organizations struggle 
to realize value from data lake projects, 
and instead find themselves mired in 
lengthy and complex implementations.

The reason for this is that while data lakes 
make data very easy to store, when it 
comes to operationalizing the data for 
analysis, things get tricky.

Unlike a data warehouse, where data is 
preprocessed and structured before it is 
written into database tables, data lake 
storage consists of objects - often millions

Data needs to be processed before it 
can be put to use
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Data processing:

a common roadblock



of them - stored in folder-like structure in 
a cloud repository such as Amazon S3. 
Data will often originate from multiple 
sources and land in structured, 
semi-structured and unstructured 
formats, and even within the same source, 
schema and fields change over time. Data 
being ‘poured’ into the lake in this fashion 
often leads to the infamous problem of 
data swamps - with the lake becoming a 
practically unusable mess of unstructured, 
uncataloged and unidentifiable data.

Eventually, we do not wish to store data 
merely for the sake of storing it; data is 
meant to serve the business through some 
kind of production use case - analytics, 
machine learning or powering data-driven 
applications. Supporting these varied use 
cases means transforming the raw data 
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into structured and optimized datasets 
that can be made available  to different 
consumers. This is where data processing 
tools come in.

To make raw data consumable you must 
process it first so that it is structured and 
optimized for use by data consumers.
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There are multiple data processing 
challenges that need to be addressed in 
order to make data lake storage 
analytics-ready:

Why we need to process the data

Query engines struggle to 
handle large volumes of small files.

Optimizing the object store for 
querying: 

This problem becomes acute when 
dealing with streaming sources such as 
application logs or IoT devices, which 
can generate thousands of event logs 
per second, each stored in a separate 
JSON, XML or CSV file. These files need 
to be converted into a file system 
which is optimized for fast analytical 
queries, built on columnar formats such 
as Apache Parquet or ORC.
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Since we want the data to be queryable 
from the lake by different consumers, 
we would like to be able to unify data 
from multiple sources. In order to do 
so, compute-intensive operations such 
as joins and aggregations need to be 
performed in-memory by a separate 
compute engine.

Perform stateful transformations: 

Metadata 
is stored in a separate catalog service 
such as a Apache Hive Metastore or 
AWS Glue Catalog (a managed version 
of a Hive metastore), which needs to be 
properly partitioned and kept in-sync 
with the physical file locations on disk.

Manage the metadata layer: 
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 Performing 
operations like upserts (inserts and 
updates)  and deletes on a data lake 
file system, which isn’t indexed and is 
built for append-only use cases, will 
often require separate data 
engineering effort using tools such as 
Apache Hudi or Iceberg.

Perform Upserts:
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Data Processing 
Alternatives
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Spark, first introduced in 2009 and 
released under the open-source Apache 
license 2013, offered a modern alternative 
to Hadoop MapReduce. Spark offers

The open source approach - Spark 
and Managed Spark Platforms
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a flexible real-time compute engine that 
supports complex transformations, and its 
relative popularity ensures there is a large 
open source community that continues to 
support it.  Due to its performance and 
support for popular programming 
languages like Java, Scala and Python, 
Spark has been a popular environment for 
creating data lake processing jobs.

Many organizations struggle to see get to 
production with Spark as it has a very high 
technical entry barrier and requires 
extensive dedicated engineering resources.

Why many companies struggle with 
Spark

Spark inherited the complexity of Hadoop 
and requires specialized engineers that 
understand distributed systems, coding in 
Scala/Java, workflow orchestration and
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analytics best practices. This combination 
of skills isn’t immediately available to most 
engineering teams - and when it is, it’s 
often better utilized on higher-value work 
such as application development or 
machine learning.

There is no real self-service version of 
Spark - Spark jobs are written in  low-level 
code (Scala/Java) and there are a lot of 
“levers” to pull in order to tune the data 
lake for performance. Programming 
transformations, state management and 
file system management is time intensive, 
prone to errors and beyond the technical 
scope of 95% of traditional database 
practitioners.
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While Spark’s roots are rooted firmly in 
open-source and on-premises 
development, the move towards cloud 
computing sprung several proprietary 
products that built on Spark’s core features 
while adding security, reliability and 
managed cloud infrastructure. Notable 
products in this space include Databricks, 
Amazon EMR, and Google Dataproc. These 
tools add managed scale using the 
elasticity of the cloud, but do not address 
the limitations noted above.

Cloud managed Spark

Streaming

Data

Stream

Processing
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Data warehouses have a rich ecosystem of 
ETL and ELT tools that help ingest 
application data and orchestrate 
workflows. Some popular choices include  
DBT open source, FiveTran, and Matillion. 
These tools can be used in 2 ways: 1) read 
data from sources, perform minimal 
transformations and load into tables 
(Extract-Transform-Load) or 2) run  
transformations jobs on the database 
compute engine after landing the data 
(Extract-Load-Transform). 



However, this type of ETL flow relies on 
having a database to do the heavy lifting. If 
we want to keep our data in usable 
formats on the lake, avoid vendor lock-in 
and support the open architecture that the

ETL tools won’t save the day 
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 data lake is intended for, we need to 
transform and integrate data without 
relying on database compute resources.




Upsolver was founded by database 
engineers who wanted to build a modern 
cloud data lake without the complexity of 
Spark and Hadoop. Upsolver takes the 
traditional database approach 
(configuration, not code) and applies it to 
data lake processing by applying the 
following principles:

Upsolver’s data processing is 
governed by a visual, SQL-based 
interface which can be used by all data 
practitioners including DBAs, data 
architects, analysts, data scientists, 
product managers and big data 
engineers. 

Give end users access to 100% of their 
data: 
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The Upsolver approach



users want to focus 
on writing business logic 
(transformations); the subsequent 
engineering work is abstracted away 
and automated. Data consistency (no 
loss, no duplications), ETL jobs 
orchestration, ETL state management 
and file system management are all 
handled automatically according to 
best practices.

Hide database complexity to allow for 
focus on the data: 

Upsolver’s data 
transformation language is based on 
SQL and is extensible with Python. Any 
use case that can be expressed with 
SQL, can be executed on Upsolver so 
the user doesn’t need to compromise 
between flexibility and ease-of-use. 

Have it your way: no-code, low-code or 
high-code: 
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Upsolver never stores 
data on local server storage so 
processing can elastically scale 
according to the workload. The infinite 
throughput of cloud object storage is 
key to ensuring this.

Elastic scaling: 

Upsolver 
runs on fully managed clusters 
(dedicated per customer) that 
auto-scale on-demand. There is no 
need to backup Upsolver instances 
since all data is stored on cloud 
storage. If an instance crashes, a new 
one will spin up and continue the 
processing work. 

No infrastructure to manage: 
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Upsolver processes all 
data as a stream, ensuring extremely 
low latency even when working with 
data that hits all the ‘V’s of big data - 
volume, velocity, variety, and veracity.

Streaming first: 

Upsolver utilizes cloud object 
storage and low cost compute 
instances for processing, creating the 
lowest possible footprint of cloud 
provider costs.

Low cost: 



Comparing Upsolver vs 
Spark - Feature by 
Feature

Cost
Cost



Storage



Compute Type



Compute RAM Footprint



Manual effort

Upsolver Apache Spark

Cloud object storage

On-demand / Reserved / Spots

Streaming

Compressed indexes

Low

Batches


Uncompressed RDDs, DataFrames

High


Near zero Data engineering team DevOps + Data 

engineering team

Managed Spark tools

Development Effort
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Manage infrastructure
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Transformations





High cardinality joins
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Platform

Plug-n-play connectors

schema-on-read

Field level statistics

Auto-generated 

SQL / UI
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Apache Spark

Platform

Code

Code

Code

3rd party key-value store

Managed Spark tools

User
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Maintenance

Instance management



Version updates



Auto-scaling



Schema evolution



Reprocessing / Replay

Upsolver

Automatic

Automatic

Automatic

3 clicks

3 clicks

Apache Spark

Manual

Manual

Manual

Code

Code

Managed Spark tools

Automatic

Automatic

Automatic

User profile

Big data engineers


Data Scientists


Data Analysts


RDBMS DBAs


Product Managers


Developers

Upsolver

Yes

Yes

Yes

Yes

Yes

Yes

Apache Spark

No

No

No

No

No

Managed Spark tools

Sometimes

No

No

No

No

Workflow Orchestration





Compaction





Integration to metastores





Performance tuning

Automatic

Automatic

Automatic

Automatic

Manual

Manual

Manual

Manual
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Summary

Dev-time


Maintenance overhead


Stateful transformations


Scaling


Total cost of ownership

Upsolver

Minutes to hours 

(similar to databases)

Near zero

Yes. Using SQL

(Extensible with Python)

Elastic

Low

Apache Spark

Months to years

(extensive development


project)

Very high

Yes. Using code

Manual

High

Managed Spark tools

Weeks to months

(writing code)

High

Yes. Using code

Elastic

High



Upsolver is an Amazon Web Services 
Advanced Technology Partner and a 
trusted AWS Athena partner. Data-driven 
companies such as ironSource, Wix, and 
The Meet Group use Upsolver to power 
data lakes and deliver batch and stream 
processing at unparalleled ease.
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Start for free with 
Upsolver on the AWS 
Marketplace.



Get access to all functionality for 
free by deploying Upsolver on the 

AWS marketplace.

Ready to get started? 

GET STARTED

https://aws.amazon.com/marketplace/pp/B07T8JDQ57?ref_=srh_res_product_title

