
Building a Cloud Data Lake

Table of Contents
Apache Spark promised a bright
future for data lakes. Has it lived up to
expectations?

The Data Lake Dilemma

Data processing: a common roadblock

Data Processing Alternatives

The Upsolver approach

Comparing Upsolver vs Spark -
Feature by Feature

Start for free with Upsolver on the
AWS Marketplace.

3.

6.

9.

15.

21.

25.

28.

2

survey

Since the middle of the last decade,
Apache Spark has become the de-facto
standard for large-scale distributed data
processing. This open-source framework
leveraged in-memory MapReduce and
promised to simplify and accelerate data
science projects, which had previously
been mired by the difficulties of the
Hadoop framework from which Spark
evolved. In a 2016 Stack Overflow ,
Spark was rated as the highest paying and
2nd most trending technology, indicating
the promise that the development
community saw in it.

3

Apache Spark promised a
bright future for data
lakes. Has it lived up to
expectations?

https://databricks.com/blog/2016/03/22/apache-spark-trending-in-the-stack-overflow-survey.html

However, Apache Spark is now over a
decade old and no longer the new kid on
the block, but an established part of the big
data development toolkit - either in its
original open-source format or in the
various proprietary tools it has progenated
- including Databricks, Elastic MapReduce,
and Google Cloud’s Dataproc.

Has Spark lived up to its promise? Is it
delivering value to organizations in the age
of cloud computing? Does it serve data
engineers in building data lake
infrastructure, as well as data scientists
using it for ad-hoc data exploration?

In this ebook we will highlight the ways in
which Spark and Spark-based managed
services fit into the modern data
engineering landscape, and see how they

4

 compare to Upsolver, a cloud-native data
processing solution built for data lakes.

5

The Basics

Days

1 Engineer / DBA / Analyst

Months

3-4 Big Data Engineers

Data transformations

Raw data schema detection

Job orchestration

State management

Exactly-once processing

File-system optimization

Healing scaling upgrades

Time-to-Production

Headcount

UI / SQL

Upsolver

Upsolver

Upsolver

Upsolver

Upsolver

Upsolver

Scala / Python

User

User

User

User

User

User / Platform

Data lakes provide unlimited and
affordable raw data storage, but have
proven difficult to operationalize due to
costly and complex data processing
required to make that data consumable.

To understand the role data processing
tools play in modern data lake
implementations, we first need to
understand what a data lake is and why
organizations choose to implement data
lakes in the first place.

The data lake is an approach to big data
architecture that premised on storing all
the dat an organization generates in its
original form, in a single repository that
serves multiple analytic use cases or
services.

What is a data lake?

6

The Data Lake Dilemma

Data lakes center around decoupled and
virtually limitless object storage in which to
preserve all raw data in a “store now,
analyze later” paradigm. In the cloud, the
storage layer leverages inexpensive object
storage such as Amazon S3, Azure Blob
Storage, or Google Cloud Storage; and the
data lake typically also consists of a
variable range of tools and technologies
that move, structure, and catalog the data
to make it queryable – and therefore
valuable.

7

Why do organizations use data
lakes?

Decoupling cloud
storage from compute allows
organizations to store more data
without worrying about ballooning
costs.

Storage costs: 1.

 Cloud object storage is the
most reliable means of storage, with
tools such as Amazon S3 promising
99.999999999% object durability.

Reliability:2.

 Since all data is stored
in raw form, it can easily be replayed to
recreate a historical state and for error
recovery.

Fault tolerance:3.

Using cloud object storage
prevents lock-in to a specific database
or data warehouse vendor, allowing
companies can employ a best-of-breed
tooling strategy.

Openness: 4.

The attractiveness of the data lake is that
when data is generated, it is often unclear
what parts of the data will be used for
what purpose. A cheap raw storage layer
keeps your options open.

8

While the advantages of data lakes make
them indispensable in a modern big data
architecture, many organizations struggle
to realize value from data lake projects,
and instead find themselves mired in
lengthy and complex implementations.

The reason for this is that while data lakes
make data very easy to store, when it
comes to operationalizing the data for
analysis, things get tricky.

Unlike a data warehouse, where data is
preprocessed and structured before it is
written into database tables, data lake
storage consists of objects - often millions

Data needs to be processed before it
can be put to use

9

Data processing:

a common roadblock

of them - stored in folder-like structure in
a cloud repository such as Amazon S3.
Data will often originate from multiple
sources and land in structured,
semi-structured and unstructured
formats, and even within the same source,
schema and fields change over time. Data
being ‘poured’ into the lake in this fashion
often leads to the infamous problem of
data swamps - with the lake becoming a
practically unusable mess of unstructured,
uncataloged and unidentifiable data.

Eventually, we do not wish to store data
merely for the sake of storing it; data is
meant to serve the business through some
kind of production use case - analytics,
machine learning or powering data-driven
applications. Supporting these varied use
cases means transforming the raw data

10

into structured and optimized datasets
that can be made available to different
consumers. This is where data processing
tools come in.

To make raw data consumable you must
process it first so that it is structured and
optimized for use by data consumers.

11

Staging area

Staging area

Staging area

Databases

Query tools

Machine

learning

Consumption-realy data

(partitioned, compacted, readable)

Structured data

(querable with SQL)

Data Lake

Unstructured

data storage

Streaming

data

Batch

data

There are multiple data processing
challenges that need to be addressed in
order to make data lake storage
analytics-ready:

Why we need to process the data

Query engines struggle to
handle large volumes of small files.

Optimizing the object store for
querying:

This problem becomes acute when
dealing with streaming sources such as
application logs or IoT devices, which
can generate thousands of event logs
per second, each stored in a separate
JSON, XML or CSV file. These files need
to be converted into a file system
which is optimized for fast analytical
queries, built on columnar formats such
as Apache Parquet or ORC.

12

Since we want the data to be queryable
from the lake by different consumers,
we would like to be able to unify data
from multiple sources. In order to do
so, compute-intensive operations such
as joins and aggregations need to be
performed in-memory by a separate
compute engine.

Perform stateful transformations:

Metadata
is stored in a separate catalog service
such as a Apache Hive Metastore or
AWS Glue Catalog (a managed version
of a Hive metastore), which needs to be
properly partitioned and kept in-sync
with the physical file locations on disk.

Manage the metadata layer:

13

 Performing
operations like upserts (inserts and
updates) and deletes on a data lake
file system, which isn’t indexed and is
built for append-only use cases, will
often require separate data
engineering effort using tools such as
Apache Hudi or Iceberg.

Perform Upserts:

14

Data Processing
Alternatives

Сloud data lake analytics landscape

3rd party data stores

(Snowflake, Splunk, MySQL)

Storage

ABS GCSS3

Query

Starburst (trino)Athena

Dremio (Drill)Ahana (prestoDB)

DataBricks SQLSnowflakes

External tables

BigQuery

External tables

Redshift

Spectrum

Metadata Stores

Glue

Catalog

Hudi IcebergMetastore

Compute

DataFlow

(Beam)

Glue ETL

(Spark)

HDInsinght

(Spark/Handoop)

EMR

(Spark/Handoop)

DataBricks

Jobs Compute

Upsolver

(SQL)

File Formats

15

Spark, first introduced in 2009 and
released under the open-source Apache
license 2013, offered a modern alternative
to Hadoop MapReduce. Spark offers

The open source approach - Spark
and Managed Spark Platforms

16

a flexible real-time compute engine that
supports complex transformations, and its
relative popularity ensures there is a large
open source community that continues to
support it. Due to its performance and
support for popular programming
languages like Java, Scala and Python,
Spark has been a popular environment for
creating data lake processing jobs.

Many organizations struggle to see get to
production with Spark as it has a very high
technical entry barrier and requires
extensive dedicated engineering resources.

Why many companies struggle with
Spark

Spark inherited the complexity of Hadoop
and requires specialized engineers that
understand distributed systems, coding in
Scala/Java, workflow orchestration and

17

analytics best practices. This combination
of skills isn’t immediately available to most
engineering teams - and when it is, it’s
often better utilized on higher-value work
such as application development or
machine learning.

There is no real self-service version of
Spark - Spark jobs are written in low-level
code (Scala/Java) and there are a lot of
“levers” to pull in order to tune the data
lake for performance. Programming
transformations, state management and
file system management is time intensive,
prone to errors and beyond the technical
scope of 95% of traditional database
practitioners.

18

While Spark’s roots are rooted firmly in
open-source and on-premises
development, the move towards cloud
computing sprung several proprietary
products that built on Spark’s core features
while adding security, reliability and
managed cloud infrastructure. Notable
products in this space include Databricks,
Amazon EMR, and Google Dataproc. These
tools add managed scale using the
elasticity of the cloud, but do not address
the limitations noted above.

Cloud managed Spark

Streaming

Data

Stream

Processing

19

Data warehouses have a rich ecosystem of
ETL and ELT tools that help ingest
application data and orchestrate
workflows. Some popular choices include
DBT open source, FiveTran, and Matillion.
These tools can be used in 2 ways: 1) read
data from sources, perform minimal
transformations and load into tables
(Extract-Transform-Load) or 2) run
transformations jobs on the database
compute engine after landing the data
(Extract-Load-Transform).

However, this type of ETL flow relies on
having a database to do the heavy lifting. If
we want to keep our data in usable
formats on the lake, avoid vendor lock-in
and support the open architecture that the

ETL tools won’t save the day

20

 data lake is intended for, we need to
transform and integrate data without
relying on database compute resources.

Upsolver was founded by database
engineers who wanted to build a modern
cloud data lake without the complexity of
Spark and Hadoop. Upsolver takes the
traditional database approach
(configuration, not code) and applies it to
data lake processing by applying the
following principles:

Upsolver’s data processing is
governed by a visual, SQL-based
interface which can be used by all data
practitioners including DBAs, data
architects, analysts, data scientists,
product managers and big data
engineers.

Give end users access to 100% of their
data:

21

The Upsolver approach

users want to focus
on writing business logic
(transformations); the subsequent
engineering work is abstracted away
and automated. Data consistency (no
loss, no duplications), ETL jobs
orchestration, ETL state management
and file system management are all
handled automatically according to
best practices.

Hide database complexity to allow for
focus on the data:

Upsolver’s data
transformation language is based on
SQL and is extensible with Python. Any
use case that can be expressed with
SQL, can be executed on Upsolver so
the user doesn’t need to compromise
between flexibility and ease-of-use.

Have it your way: no-code, low-code or
high-code:

22

Upsolver never stores
data on local server storage so
processing can elastically scale
according to the workload. The infinite
throughput of cloud object storage is
key to ensuring this.

Elastic scaling:

Upsolver
runs on fully managed clusters
(dedicated per customer) that
auto-scale on-demand. There is no
need to backup Upsolver instances
since all data is stored on cloud
storage. If an instance crashes, a new
one will spin up and continue the
processing work.

No infrastructure to manage:

23

24

Upsolver processes all
data as a stream, ensuring extremely
low latency even when working with
data that hits all the ‘V’s of big data -
volume, velocity, variety, and veracity.

Streaming first:

Upsolver utilizes cloud object
storage and low cost compute
instances for processing, creating the
lowest possible footprint of cloud
provider costs.

Low cost:

Comparing Upsolver vs
Spark - Feature by
Feature

Cost
Cost

Storage

Compute Type

Compute RAM Footprint

Manual effort

Upsolver Apache Spark

Cloud object storage

On-demand / Reserved / Spots

Streaming

Compressed indexes

Low

Batches

Uncompressed RDDs, DataFrames

High

Near zero Data engineering team DevOps + Data

engineering team

Managed Spark tools

Development Effort

25

Manage infrastructure

Ingestion

Schema discovery

Transformations

High cardinality joins

Upsolver

Platform

Plug-n-play connectors

schema-on-read

Field level statistics

Auto-generated

SQL / UI

Included

Apache Spark

Platform

Code

Code

Code

3rd party key-value store

Managed Spark tools

User

26

Maintenance

Instance management

Version updates

Auto-scaling

Schema evolution

Reprocessing / Replay

Upsolver

Automatic

Automatic

Automatic

3 clicks

3 clicks

Apache Spark

Manual

Manual

Manual

Code

Code

Managed Spark tools

Automatic

Automatic

Automatic

User profile

Big data engineers

Data Scientists

Data Analysts

RDBMS DBAs

Product Managers

Developers

Upsolver

Yes

Yes

Yes

Yes

Yes

Yes

Apache Spark

No

No

No

No

No

Managed Spark tools

Sometimes

No

No

No

No

Workflow Orchestration

Compaction

Integration to metastores

Performance tuning

Automatic

Automatic

Automatic

Automatic

Manual

Manual

Manual

Manual

27

Summary

Dev-time

Maintenance overhead

Stateful transformations

Scaling

Total cost of ownership

Upsolver

Minutes to hours

(similar to databases)

Near zero

Yes. Using SQL

(Extensible with Python)

Elastic

Low

Apache Spark

Months to years

(extensive development

project)

Very high

Yes. Using code

Manual

High

Managed Spark tools

Weeks to months

(writing code)

High

Yes. Using code

Elastic

High

Upsolver is an Amazon Web Services
Advanced Technology Partner and a
trusted AWS Athena partner. Data-driven
companies such as ironSource, Wix, and
The Meet Group use Upsolver to power
data lakes and deliver batch and stream
processing at unparalleled ease.

28

Start for free with
Upsolver on the AWS
Marketplace.

Get access to all functionality for
free by deploying Upsolver on the

AWS marketplace.

Ready to get started?

GET STARTED

https://aws.amazon.com/marketplace/pp/B07T8JDQ57?ref_=srh_res_product_title

